A Computer Motivated Study of

Problems in Number Theory
Mathematical Appendix

Michael Blinov!, Nurit Zehavi? and Sarah Black®

! Mathematics Department, The Weizmann Institute of Science, Rehovot
e-mail: blinov@wisdom.weizmann.ac.il

2 Science Teaching Deprtment, The Weizmann Institute of Science, Rehovot
e-mail: nurit.zehavi@weizmann.ac.il

3 Mathematics Department, Michlala-Jerusalem College, Jerusalem, Israel
e-mail: sblackl@macam.ac.il

Note 1: Prime Number Theorem

The Prime Number Theorem. The number of primes not exceeding N, mw(N)
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Legendre (1752-1833) and, after him, Gauss (1777-1855) conjectured that this

number is approximately
n
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It was first proved in 1896 by Hadamard (1865-1963) and de la Vallée Poussin
(1866-1962), and even today its proof is far from simple.

Note 2: Congruence modulo n
Definition. Let n be a fixed positive number. Then a and b are said to be congru-
ent modulo n, denoted by a = b (modn), if a—0b is divisible by n, i.e. a—b=kn

for some k € Z.

The congruence property is similar to the usual equality:



(1) a = a (modn)

(2) If a = b (modn), then b = a (modn).

(3) If a = b (modn) and b = ¢ (modn), then a = ¢ (modn).

(4) If @ = b (modn) and ¢ = d (modn), then a + ¢ = b+ d (modn) and
ac = bd (modn)

If we replace = (modn) by =, we get the usual properties of integers Z.

Because of these properties, Z,,, like Z, is a ring.

Let us note, that any number a € Z can be represented as a = a; + kn, where
a1 is among numbers 0,1,...,n — 1. Therefore it is easy to see that the elements
of Zy are 0,1,...,n — 1. We will return briefly to the notion of Z,, in note 6, but
the essential point is that for any expression f(z), the notation f(z) =0 (modn)
means that f(z) is divisible by n.

Note 3: Number representations and Chinese Remain-
der Theorem

(1) Any natural number can be uniquely written as n = p'flpgz---pfﬂ where
p; are distinct primes that divide n.
2) If f(z) =0 (mod p*ipk? ... pks , where p; are distinct prime numbers, then
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For example, if an expression is divisible by 24, then it is divisible by 3 and 8.

(3) “The Chinese Remainder Theorem”: Let n = p’flpgz---pES, where p;
are different primes. Then for any (ai1,as,...,a,) there exists a unique x* € Zn,
satisfying

z* = ay (modp®),

z* = ay (modps?),

Corollary 1: Let n = p]flp;c2 --pks. Assume that

the congruence f(z) = 0 (modp®) has solutions (mgl), e ,wgll)),
the congruence f(z) = 0 (modpX?) has solutions (:c&Z), e ,:vg)),
the congruence f(z) =0 (modp%) has solutions (xgs), e ,mgj)).
Then for any set (xz(ll),xgz), . ,J;E:)), there exists a unique z* € {0,1,...,n —

1}, which solves the equation x> —1 = 0 (modn), and for different sets these x*
values are different.



Corollary 2: Let n = plflpg2 .. pks. Assume that
the congruence f(z) =0 (modp™) has Ty solutions,
the congruence f(z) =0 (modpy?) has Ty solutions,
the congruence f(z) =0 (modpé) has Ts solutions.
Then f(z) =0 (modn) has TYT, - - - Ts solutions.

Note 4: Formula for F(n)

Lemma 1. The congruence 2 — 1 = 0 (mod p®), where p is a prime number
greater than or equal to 3, has only two solutions x =1 and z = p® — 1.

Proof: z?—1 divisible by p® means that either (z—1)(z+1) = 0or (z—1)(z+1) =
p%q. In the first case we get the solution £ = 1, in the second case we get

z—1=pht
z+1=pTr

where ¢, are relatively prime topand 8 >0,7v> 0,8+ 7 > a.

So, z = pPt+1 = p’r—1, hence p'r — pPt = 2. If p # 2, then the last equation
does not have solutions if v > 0 and 8 > 0 simultaneously, since then the right
hand side of the equation is divisible by p, and the left hand side is not.

If 3 =0, then v = a + i, where i > 0, so z = p”’r — 1 = p*p'r — 1 must be less
than p® and greater than or equal to 0, which is possible only for 4 = 0 and r = 1.
Thus we obtain the solution z = p® — 1.

Similarly, if ¥y = 0, then 8 = a+14, where i > 0, so z = pPt+1 = p®pit+ 1 must
be less than p®, which is possible only for £ = 0. This gives the solution z = 1.

Therefore, there are only two solutions in this case.

Lemma 2. The congruence 2 — 1 =0 (mod 2%) has:
(1) one solution; z =1 for a = 1;
(2) two solutions; x =1 and x = 3 for a = 2;
(3) four solutions; z =1,z =2%1—-1,=2%141,2=2%-1 for a> 3.

Proof: The proof is similar to the proof of Lemma 1. Cases (1) and (2) are trivial.
Consider case (3). 22 — 1 is divisible by 2% means that (z — 1)(z + 1) is divisible
by 2%, which means that either (z — 1)(z +1) =0 or (z — 1)(z + 1) = 2%g. In the
former we get the solution z = 1, in the latter we get

{ z—1=20¢
z+1=27r
where ¢, are odd and 8 > 0,y > 0 and f+7 > . We obtain z = 28¢t+1 = 27r—1,
hence 27r — 28t = 2.

The values 8 and y cannot be equal to 0 simultaneously for then o = 0 contrary
to assumption. Neither one of them can be equal to 0, since an odd number on



the left hand side equals 2. Both of them cannot be greater than 1, since then the
left hand side of the equation will be divisible by 4, and the right hand side — only
by 2. So we are left with the possibility that precisely one of the numbers 3, v
must be equal to 1.

Ify=1,thenf>a—1,s0 8 =a+1i— 1, wherei > 0.

r—1=2%t = g=20ti"ly 41

<2 = 27M2%-2)+1<0 = t=1,i=0.
We get the solution z = 21 — 1.
If 8 =1, then v > a — 1, therefore v = o+ % — 1, where 7 > 0.

z+1=2" = g=20t"1p_1,

0<z<2* = 2712 -2)-1<0 = 27-2<0

We get either r =1, i = 0, or 7 = 1, i = 1, which lead to the solutions z = 241 —1
and x = 2% — 1, qg.e.d.

Using corollary 2 of Note 3, we obtain the following:

Formula. The number of solutions of the equation z2> — 1 =0 (mod n) is
1) 2%, ifn= p’flpg” coophs pi >3 (1 <i<s) - distinct prime numbers;
2) 2% ifn= 2plf1p§2 -oephs p; >3 (1 <i<s)- distinct prime numbers;
8) 25t ifn = 41)’1“;01262 -oophs p; >3 (1 <i<s) - distinct prime numbers;
4) 25%2 ifn = 2’“’1)11“1)'2C2 coopls py >3 (1 <i<s) - distinct prime numbers,
ko > 3.

Note 5: Fermat’s Little Theorem and Euler’s Theorem

Fermat’s Little Theorem. If p is a prime number and a is an integer in Zyp
(i.e. a €{0,1,...,p—1}), then

a?~! =1 (modp),
i.e. aP~1 — 1 is divisible by p.

Euler’s theorem. If p is a prime number and a is an integer in Zpo (i.e. a €
{0,1,...,p% — 1} and (p,a) = 1), then

a—1

a? Pt =1 (mod p®),

ie. aP*P* 7" — 1 is divisible by p®.

Historically, Fermat’s theorem was stated in 1640, and it was generalized by
Euler in 1760. A special case of Fermat’s theorem is that if p is a prime, then p
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divides 2P — 2. The ancient Chinese knew this fact. Proofs of these theorems can
be found in any number theory book.

Note 6: Primitive roots

In examples considered we saw that Z, has multiplicative generators, i.e. ele-
ments a € Z, whose distinct powers yield Z} (namely all z € Z,, relatively prime
to n). Thus, if p is a prime number, then Z,, consists of all elements of Z,, except
0.

Such numbers a, which generate the whole Z7, are called primitive roots of
Zy, 1t follows that if @ is a primitive root of Z; for prime p, then the congruence
a*¥ =1 (modp) has only two solutions k = 0 and k = p — 1. Z,, may have several
primitive roots, for instance Zj has both 2 and 3 as primitive roots, Z7 has 3 and
5 as primitive roots; note that, for example, 4 is not a primitive root of either of
them.

One can show that for any prime p > 3 and for every natural number « there
exists a primitive root of Zy (see, e.g. T. Nagell “Number Theory”, 1964 or N.H.
McCoy “The Theory of Numbers”, 1965).

Note 7: Finding F(n) using primitive roots theory for
n=p%p=>3

What is so valuable in our exploration of the notion of a primitive root? As-
sume that when we solve the congruence z?> — 1 = 0 (modp), p is an odd prime.
If we know that a is a primitive root of Z,, then z = a* (modp) for some value of
k. Then by Fermat’s Little Theorem the congruence is a* — 1 = 0 (modp). The
number ¢ is a primitive root, so this congruence has only two solutions £ = 0 or
k = (p —1)/2. Thus the case n is an odd prime is solved.

Now consider n = p®. If we are looking for solutions of the congruence 22 —1 =
0 (modp®), then definitely they belong to the set Zj. (since for z = pk, z? -1
cannot be divided by any power of p). Similarly to the case for p, assume that a
is a primitive root of Za, then z = a* (modp®) for some value of k. Thus, by
Euler’s Theorem the congruence is a?* —1 = 0 (mod p®). But since a is a primitive
root, this equation has only the two solutions, k =0 or k = p®(p — 1)/2.



Note 8: Finding F'(n) using primitive roots theory for
n = 2%

We can easily check that Z5 and Z3, both have primitive roots. However, Z3.
for n > 3 does not have a primitive root (for if so the congruence would have two
solutions, whereas it has 4 (see Lemma 2, note 4). Rather, Z3, has two multi-
plicative generators. For example, Z3; = Zg has generators 5 and 7, for
1=52=7%(mod8),3=5-7(mod8), 5 =05 (mod8), 7="T (mod8).

In the general case the multiplicative generators of Z3,, n > 3 are 5 and 2" -1 =
—1 (mod2™), and each of the elements of Z3. can be represented either as z =
5% (mod 2™) for some value of k, or as z = (2" —1)5* = —5* (mod 2") for some value
of k (See, e.g., Hua Loo Keng “Introduction to Number Theory” (Springer-Verlag,
1982) for proof that 5 and 2" — 1 = —1 (mod 2™) are multiplicative generators.)

One can show that the congruence 52% —1 = 0 (mod 2") has two solutions k = 0
and k = 2773 hence it gives us two solutions for the case z = 5%, namely z = 1

and z = 2”73 = 14271 (mod 2"), and two solutions for the case z = —5*, namely
r=-1=2"-landz=-2""3=2""1—1(mod2").
The congruences 2”3 = 1+ 2" ! (mod2") and 2" — 1 and z = —2"3 =

271 — 1 (mod2™) can be proved by induction. Such a proof can be found in Hua
Loo Keng “Introduction to Number Theory”.

Note 9: Artin’s conjecture

Let a be a fixed number, 7(N) be the number of primes less than or equal to
N, v4(N) be the number of primes less than or equal to N for which a is a primi-
tive root. What is the connection between these two numbers for different values
of a and large values of N7

Artin’s conjecture (1927): If a # b" with n > 1, then vo(N) ~ An(N), where
A is Artin’s constant, A = 0.3739558....

But how could it be conceived at the beginning of the century, when fast
computer calculations were fairy tales?

First of all, mathematicians are very hardworking, and such tables up to
N = 100 000 were computed manually (!) in 1913 by Cunningham. The sec-
ond point: different techniques are involved in Number Theory, and one of them
has probability arguments. So, the following considerations made this conjecture
plausible. We would like to outline the ingredients of its probabilistic proof. For
complete proofs reader is referred to V. Klee, S. Wagon, Old and New Unsolved
Problems in Plane Geometry and Number Theory.

Consider a = 2 and the primes p < N, where N is large enough. Let us count
all p’s less than N, s.t. 2 is a primitive root of Z;.

For every prime p choose any primitive root g, of Z;. Then for some natural



My, gp* = 2 (modp).

Claim 1. 2 is a primitive root of Zy if and only if (my,p — 1) = 1. (Outline of
stages required for proof follows at the end.)

So, let (mp,p —1) = G,. We have to find those p, for which G, = 1. Let us
eliminate from all primes less than N those p, for which 2|G,,.

Claim 2. Asymptotically, half of all primes p satisfy 2|Gp. (Outline of stages
required for proof follows at the end.)

So we are left with (1 — )7 (XN) primes for which 2 can be a primitive root, since
2 does not divide Gy,.

Next we eliminate those p for which 3|G),.
Claim 3. There are 3%27r(N) such primes among the all primes less than N.
(Outline of stages required for proof follows at the end.)

So we are left with (1 — 3)(1 — 3_%)W(N ) primes for which 2 can be a primitive
root, since 2 does not divide G, and 3 does not divide G,

Continuing eliminating primes p with 5 | Gp, 7 | Gp, etc., we are left with
those p, for which G, = 1, as no prime divides G),. The number of such primes is

1
Am(N), where A (called Artin’s constant) is given by H (1 - ﬁ) Exact
p\p—
2

computations (done in 1961 by J. W. Wrench, Jr.) gave A the following value:
A =0.3739558136 19202 28805 47280 54346 41641 51116.....

The cases of a = 3,5,7,... are considered similarly.

Proof of claim 1 follows from the Fermat’s Little theorem: ¢% = 1 (modp) if
and only if a = 0 (modp — 1).
Proof of claim 2 follows from the following series of considerations, facts 1-3,

difficulty of each of them is given in brackets — from trivial (*) to very difficult

Let us notice that p — 1 is always even, except for p = 2. So (m,p —1) = G,
is divisible by 2 if and only if m is odd.

Fact 1.(*) m(g,) is even for those p’s, for which the equation z> = 2 (modp)
has a solution.

Fact 2.(**) 22 = 2 (modp) is solvable for all primes p = 4k+1 and unsolvable
for all primes p = 4k + 3.

Fact 3.(***) The number of primes of the form p = 4k +1 is “asymptotically
equal” to the number of primes of the form p = 4k + 3.

Proof of claim 3 follows from the series of similar considerations:



Fact 4.(***) The number of primes of the form p = 3k + 1 is “asymptotically
equal” to the number of primes of the form p = 3k + 2.

Therefore 3|p — 1 in one half of the cases.

Fact 5.(*) 3 | m(gp) in one-third of the cases.

Fact 6.(*) The events 3 | m(gp) and 3 | Gp are independent.



